Collaborative Reliability Analysis under the Framework of Multidisciplinary Systems Design

نویسندگان

  • Xiaoping Du
  • Wei Chen
چکیده

Traditional Multidisciplinary Design Optimization (MDO) generates deterministic optimal designs, which are frequently pushed to the limits of design constraint boundaries, leaving little or no room to accommodate uncertainties in system input, modeling, and simulation. As a result, the design solution obtained may be highly sensitive to the variations of system input which will lead to performance loss and the solution is often risky (high likelihood of undesired events). Reliability-based design is one of the alternative techniques for design under uncertainty. The natural method to perform reliability analysis in multidisciplinary systems is the all-in-one approach where the existing reliability analysis techniques are applied directly to the system-level multidisciplinary analysis. However, the all-on-one reliability analysis method requires a double loop procedure and therefore is generally very time consuming. To improve the efficiency of reliability analysis under the MDO framework, a collaborative reliability analysis method is proposed in this paper. The procedure of the traditional Most Probable Point (MPP) based reliability analysis method is combined with the collaborative disciplinary analyses to automatically satisfy the interdisciplinary consistency when conducting reliability analysis. As a result, only a single loop procedure is required and all the computations are conducted concurrently at the individual discipline-level. Compared with the existing reliability analysis methods in MDO, the proposed method is efficient and therefore provides a cheaper tool to evaluate design feasibility in MDO under uncertainty. Two examples are used for the purpose of verification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collaborative Reliability Analysis for Multidisciplinary Systems Design

Traditional Multidisciplinary Design Optimization (MDO) generates deterministic optimal designs, which are frequently pushed to the limits of design constraint boundaries, leaving little or no room to accommodate uncertainties in system input, modeling, and simulation. As a result, the design solution obtained may be highly sensitive to the variations of system input which will lead to performa...

متن کامل

Collaborative multidisciplinary design optimization: A framework applied on aircraft conceptual system design

In a product development process, it is crucial to understand and evaluate multiple and synergic aspects of systems such as performance, cost, reliability and safety. These aspects are mainly considered during later stages of the design process. However, in order to improve the foundations for decision-making, this paper presents methods that are intended to increase the engineering knowledge i...

متن کامل

A Robust Collaborative Optimization Method Under Multidisciplinary Uncertainty∗

Multidisciplinary design optimization (MDO) is a useful technique on complex product design in recent years. Collaborative optimization (CO) is an effective MDO methods based decomposition which is for deterministic optimization. However, many uncertainties exist in product design such as model error and design variables error. And the propagation of uncertainties in multidisciplinary is more c...

متن کامل

Designing collaborative learning model in online learning environments

Introduction: Most online learning environments are challenging for the design of collaborative learning activities to achieve high-level learning skills. Therefore, the purpose of this study was to design and validate a model for collaborative learning in online learning environments. Methods: The research method used in this study was a mixed method, including qualitative content analysis and...

متن کامل

Collaborative Multidisciplinary Design Optimization : A Framework Applied on Aircraft Systems and Industrial Robots

In a product development process, it is crucial to understand and evaluate multiple and synergic aspects of systems such as performance, cost, reliability and safety. In order to improve the foundations for decision-making, this thesis presents methods that are intended to increase the engineering knowledge in the early design phases. In complex products, different systems from a multitude of e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003